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Abstract
Aim: Understanding and predicting the biological consequences of climate change re-
quires considering the thermal sensitivity of organisms relative to environmental tem-
peratures. One common approach involves ‘thermal safety margins’ (TSMs), which are 
generally estimated as the temperature differential between the highest temperature 
an organism can tolerate (critical thermal maximum, CTmax) and the mean or maximum 
environmental temperature it experiences. Yet, organisms face thermal stress and 
performance loss at body temperatures below their CTmax, and the steepness of that 
loss increases with the asymmetry of the thermal performance curve (TPC).
Location: Global.
Time period: 2015– 2019.
Major taxa studied: Ants, fish, insects, lizards and phytoplankton.
Methods: We examine variability in TPC asymmetry and the implications for thermal 
stress for 384 populations from 289 species across taxa and for metrics including ant 
and lizard locomotion, fish growth, and insect and phytoplankton fitness.
Results: We find that the thermal optimum (Topt, beyond which performance declines) 
is more labile than CTmax, inducing interspecific variation in asymmetry. Importantly, 
the degree of TPC asymmetry increases with Topt. Thus, even though populations with 
higher Topts in a hot environment might experience above- optimal body temperatures 
less often than do populations with lower Topts, they nonetheless experience steeper 
declines in performance at high body temperatures. Estimates of the annual cumulative 
decline in performance for temperatures above Topt suggest that TPC asymmetry alters 
the onset, rate and severity of performance decrement at high body temperatures.
Main conclusions: Species with the same TSMs can experience different thermal risk 
due to differences in TPC asymmetry. Metrics that incorporate additional aspects of 
TPC shape better capture the thermal risk of climate change than do TSMs.

K E Y W O R D S
critical thermal maximum, CTmax, optima, thermal performance curve, thermal safety margin, 
thermal tolerance, TPC

1  |  INTRODUC TION

The impact of climate change on organisms depends not only on 
the magnitude of temperature change, but also on an organism's 

sensitivity to the change (Buckley & Kingsolver, 2021; Deutsch 
et al., 2008). Organisms in the tropics may experience larger fitness 
impacts –  despite a lesser magnitude of climate change –  because 
relatively constant tropical climates select for thermal specialization 
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(Deutsch et al., 2008; Dillon et al., 2010; Janzen, 1967). Nevertheless, 
the greater and increasing magnitude of thermal variation in temper-
ate areas may equalize fitness impacts across latitude (Kingsolver 
et al., 2013; Vasseur et al., 2014). These insights have led to the de-
velopment of thermal risk indices that incorporate thermal sensitiv-
ity and environmental temperatures.

‘Thermal safety margins’ (TSMs) are commonly used to predict and 
index thermal risk (Clusella- Trullas et al., 2021; Deutsch et al., 2008). 
TSMs indicate the differential between temperatures an organism 
can tolerate and those it experiences. Deutsch et al. (2008) initially 
defined TSM as the difference between thermal optimum (Topt, the 
temperature corresponding to peak performance) and annual mean 
habitat temperature, and they also defined ‘warming tolerance’ (WT) 
as the difference between the warmest temperature at which an 
organism can function –  critical thermal maximum (CTmax) –  and its 
‘habitat’ temperature (Figure 1a). Subsequent analyses have often 
reversed these definitions, such that TSM is often the temperature 
difference between CTmax and maximum operative or habitat tem-
peratures (Pinsky et al., 2019; Sunday et al., 2014). We employ the lat-
ter definition here. Large positive differences are usually interpreted 
as implying that an organism has relatively low risk of heat stress and 
of experiencing a performance decrement from high temperatures.

Analyses using TSMs suggest that tropical organisms are espe-
cially vulnerable to climate change (Deutsch et al., 2008; Diamond 
et al., 2012; Huey et al., 2009), that microclimate (Pincebourde 
& Casas, 2019) and temporal (Kingsolver et al., 2013; Vasseur 
et al., 2014) environmental variation are important, that thermo-
regulation is sometimes needed to buffer thermal stress (Kearney 
et al., 2009; Sunday et al., 2014), and that marine ectotherms are 
more vulnerable than terrestrial ones (Pinsky et al., 2019).

TSMs are conceptually useful because they relate an index of 
organismal heat tolerance (CTmax, an index of organismal failure) to 
an independent measure of environmental temperature. They are 
tractable because thousands of CTmax values have been measured 
(Bennett et al., 2018), and environmental temperatures are read-
ily available. However, TSMs are challenging to interpret (Clusella- 
Trullas et al., 2021). A TSM of 1 °C likely implies more thermal risk 
than does a TSM of 10 °C, but is the magnitude of thermal risk a 
linear or curvilinear function of TSM? When TSMs are large, inter-
specific or intraspecific differences in TSMs will be of little biological 
significance as these organisms are unlikely to face thermal risk.

Another issue is deciding on the appropriate temporal scale 
of environmental data used to estimate TSMs (Clusella- Trullas 
et al., 2021; Clusella- Trullas & Chown, 2014). Studies of spatial (e.g., 
latitudinal) variation in TSMs have used various time- scales (e.g., 
hourly, annual) and different aggregation metrics (mean, maximum) 
(Clusella- Trullas et al., 2011). For example, Deutsch et al. (2008) used 
annual (also quarterly) average habitat temperatures, Kingsolver 
et al. (2013) used maximum monthly habitat temperature and Pinsky 
et al. (2019) used maximum hourly operative temperature. Risk of 
high- temperature exposure also depends on factors such as micro-
climate heterogeneity, habitat selection and behavioural thermoreg-
ulation (Garcia et al., 2019).

TSM analyses implicitly assume that risk is independent of du-
ration of exposure to high temperature, when in fact CTmax declines 
with prolonged exposure to high body temperature (Tb; Jørgensen 
et al., 2019; Kingsolver & Umbanhowar, 2018; Rezende et al., 2014, 
2020). Many exposures to extreme temperatures are transient, at 
least for mobile organisms that can use behaviour to evade pro-
longed exposure (Kearney et al., 2009). Because TSMs use a single 
environmental temperature, they implicitly –  and unrealistically –  
assume that the physiological impact of a single acute thermal ex-
treme is the same as repeating such exposures (Sinclair et al., 2016) 
or that temperature means appropriately temporally integrate acute 
exposures (Buckley, 2021).

TSMs are in effect point estimates of thermal risk. An alternative 
and more comprehensive way to conceptualize cumulative thermal 
risk involves integrating environmental data with thermal perfor-
mance curves (TPCs), which depict how performance changes with 
Tb (Huey & Stevenson, 1979; Vasseur et al., 2014; Figure 1a). TPCs 
are characterized by minimum and maximum temperatures at which 
performance is zero (critical thermal minima and maxima, CTmin and 
CTmax, respectively), Topt, and the tolerance breadth over which an 
organism can perform (Figure 1a). Weighting environmental tem-
perature data by TPCs aggregates risk over some specified inter-
val, which may be more biologically meaningful and less sensitive 
to selected time- scales. Importantly, this approach accounts for the 
onset and relative rapidity of performance declines at high Tb and 
builds on previous studies of thermal risk (Gunderson & Leal, 2012; 
Huey et al., 2009; Vasseur et al., 2014).

TPCs are unimodal but asymmetric (Gilchrist, 1995; Huey & 
Kingsolver, 1989; Huey & Stevenson, 1979). Physiological and 
biochemical rates increase exponentially with temperature be-
yond CTmin until approaching Topt (Asbury & Angilletta, 2010; Dell 
et al., 2013; Payne & Smith, 2017). Performance subsequently de-
clines rapidly beyond Topt as physical and physiological limits are ap-
proached (Knies & Kingsolver, 2010; Ratkowsky et al., 2005). This 
TPC asymmetry has ecological (Hurford et al., 2019) and evolution-
ary (Gilchrist, 1995) consequences: for example, by preferring body 
temperatures somewhat below their Topt, organisms reduce perfor-
mance declines at high body temperatures (Martin & Huey, 2008).

Unfortunately, TPCs have been measured far less often than 
has CTmax simply because TPCs require measuring performance 
at multiple temperatures as well as then selecting an appropriate 
functional curve (Angilletta, 2006; Izem & Kingsolver, 2005). In 
contrast, the endpoints of TPCs (CTmin and CTmax) can either be es-
timated directly using acute exposure to low and high, often ramp-
ing, temperatures or indirectly by extrapolation of the estimated 
TPC function (Deutsch et al., 2008). However, acute CTmax mea-
sures can be sensitive to the duration and rate of heating as well 
as acclimation state (Chown et al., 2009; Jørgensen et al., 2019; 
Kingsolver & Umbanhowar, 2018; Rezende et al., 2014, 2020; 
Terblanche et al., 2007), and may also vary with ontogenetic stage 
(Kingsolver & Buckley, 2020), sex, and condition (Chen et al., 2013).

TPCs also have methodological concerns. For example, TPCs 
can depend on the traits measured (Huey, 1982), levels of biological 
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organization (Bozinovic et al., 2020; Rezende & Bozinovic, 2019), 
the time- scale of measurement and application (Kingsolver & 
Woods, 2016), and the selected TPC function (Angilletta, 2006; Knies 
& Kingsolver, 2010). Moreover, estimating Topt is methodologically 
challenging, given that performance flattens at temperatures near Topt 
(Huey & Stevenson, 1979); and individual variation is typically ignored 
(Adolph & Pickering, 2008). Sinclair et al. (2016) address these and re-
lated issues in the context of estimating responses to climate change.

We examine whether TPC shape (asymmetry) varies with Topt for 
diverse taxa and environments and then consider the resulting impli-
cations for thermal risk. What are the implications of changes in TPC 
shape for the onset and rate of performance declines at high tem-
peratures? How do these performance decrements correspond to 
TSM estimates and to their latitudinal trends? We will conclude that 
although TSMs have been useful, TPCs better account for how ther-
mal sensitivity determines thermal risks posed by climate change.

F I G U R E  1  (a) Thermal performance curves (TPCs) are summarized by the lower and upper thermal limits for performance [critical 
thermal minimum (CTmin) and maximum (CTmax), respectively] and by the temperature of highest performance (thermal optimum, Topt). 
We examine two extremes in the potential warm adaptation of TPCs: Topt may shift without corresponding shifts in thermal tolerance, 
thereby shifting TPC asymmetry (left, depicted asymmetries = 0, .25, .5). Alternatively, Topt and thermal tolerance shift in synchrony (right, 
asymmetry = .25). We quantify two metrics of thermal stress. We define thermal safety margin (TSM, red) as CTmax − Tday, where Tday is mean 
daily temperature. When maximal performance is normalized to 1, the performance detriment (PD) is defined as 1 − P(Thour) for Thour > Topt, 
where P is performance at hourly temperature Thour. We depict each calculation for the middle curve in each panel. We aggregate the 
metrics to an annual scale by summing PD and dividing by the potential maximum performance (cumulative performance detriment, CPD) 
and as the minimum of TSM across days, respectively. We illustrate the metrics for Santa Fe, New Mexico, USA (35°37'3''N, −106°5'8''W, 
2,132 m a.s.l.). (b) In both scenarios, CPD (top) declines as Topt increases from 20 to 30 °C. However, TSM (bottom) increases with increasing 
Topt only if TPC curves shift in synchrony (bottom right). We depict CPD under the assumption that P(Thour) is a Gaussian, linear or quadratic 
decline between Topt and CTmax. (c) CPD and TSM estimates vary with temporal resolution of temporally averaged data. We depict temporal 
averages from hourly to annual data plus Td,max, which refers to the monthly average of daily maximum temperature data.
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2  |  METHODS

2.1  |  TPC data and comparisons

We used the terms ‘thermal optima’ and ‘Topt’ to search the literature 
for datasets that included all three thermal performance curve pa-
rameters (CTmin, Topt and CTmax) or that permitted estimates of these 
parameters. Our final dataset includes a total of 384 TPCs (289 spe-
cies) across multiple taxa. These TPCs vary in the type of performance 
measured and in the level of biological organization (see Supporting 
Information Table S1). We refer to five compiled datasets labelled by 
the taxonomic group and level of performance represented. The ant 
performance dataset describes foraging activity for 22 genera of ants, 
where Topt is estimated based on the proportion of ants foraging as a 
function of ground surface temperature (Guo et al., 2020). CTmin and 
CTmax were replaced with minimum and maximum foraging tempera-
tures, respectively, when they exceeded CTmin and CTmax estimates. The 
lizard performance dataset describes lizard sprint speed for 77 popula-
tions of 66 species, combining data from two studies (Huey et al., 2009; 
Muñoz et al., 2016). The fish growth dataset describes growth rates for 
18 populations in three species of salmonid fish (Elliott & Hurley, 1995; 
Forseth et al., 2009; Jonsson et al., 2001; Larsson et al., 2005).

The final two datasets focus on the temperature dependence 
of fitness (r: intrinsic rate of population increase). The insect fitness 
dataset describes r for 67 populations (61 species) of insects, up-
dating data (Frazier et al., 2006; Huey & Berrigan, 2001) that have 
been used in numerous analysis of climate change impacts (Deutsch 
et al., 2008 and subsequent papers) with additional recent obser-
vations (Rezende & Bozinovic, 2019). The plankton fitness dataset 
describes r for a total of 266 populations in 184 species of phyto-
plankton (Thomas et al., 2012, 2016).

It is important to appreciate the heterogeneity in biological levels 
and types of performance for interpreting the different patterns in 
TPCs (see Discussion). Note that performance is a rate for four of 
the five datasets but is a proportion for the ant performance data. 
Topt values were estimated by fitting TPC curves to performance 
measured at multiple constant temperatures. For ants and lizards, 
CTmin and CTmax estimates were based on temperature ramping 
experiments. For the other taxa, CTmin and CTmax were estimated 
by extrapolating the fitted TPC curves (Deutsch et al., 2008). The 
TPC functions and fitting methods differed among the initial pub-
lications. The Rezende and Bozinovic (2019) insect dataset used a 
TPC function with a long left tail that was not designed for estimat-
ing CTmin. We thus re- estimated CTmin, Topt and CTmax for this data-
set using the fitting algorithm from the plankton dataset (Thomas 
et al., 2012). Quality control criteria for these TPC estimates are de-
scribed in Supporting Information Table S1.

We quantified asymmetry using a TPC metric (Martin & 
Huey, 2008) that varies between −1 for a right- skewed right triangle 
to +1 for a left- skewed right triangle, with 0 indicating a symmetric 
TPC: (2 × Topt − CTmax − CTmin)/(CTmax − CTmin). Results were similar 
using an alternative TPC asymmetry metric [(CTmax − Topt)/(Topt − 
CTmin), (Deutsch et al., 2008)].

We used regressions (R Core Team, 2021) to assess how asym-
metry, CTmin, CTmax, and tolerance range (CTmax − CTmin) vary with 
Topt. We repeated these TPC shape analyses using phylogenetic gen-
eralized least squares maximum likelihood regressions to control for 
changes in shape associated with evolutionary history, independent 
of responses to thermal environments. We estimated Pagel's lambda 
using the gls() function in the ape R package (Paradis & Schliep, 2019). 
We used an Ant Wiki phylogeny (https://www.antwi ki.org) for ants, 
the lizard phylogeny from Pyron et al. (2013), and taxonomic trees 
created based on the National Center for Biotechnology Information 
(NCBI) database in the taxize R package [functions classification() 
and class2tree(), (Chamberlain & Szöcs, 2013)] for insects and phy-
toplankton. We did not use a phylogenetic analysis for the fish, given 
that we have data for only three species.

We repeated analyses with a thermodynamic scaling of each 
TPC parameter to coarsely account for exponential increases in 
biological rates with increasing temperature [thermodynamic tem-
perature: exp(−E/(k × [T + 273.15])), where T is temperature (°C), 
activation energy E = 0.757 and k is the Boltzmann constant]. This 
relationship, which makes the simplifying assumption of equal ac-
tivation energies, provides an approximate assessment of whether 
shifts in TPC shape with higher Topt reflect thermodynamics (Payne 
& Smith, 2017).

We used a principal component (PC) analysis to characterize 
variation in TPC shape to avoid the need to interpret simultaneous 
shifts in three parameters (Knies et al., 2009). We estimated PCs 
(R princomp function) using a covariance matrix (R cor function) 
based on the TPC parameters (Topt, CTmax, tolerance range = CTmax 
− CTmin). We fixed the sign (fix_sign = TRUE) so that each PC cor-
responds to an increase in Topt. We used the resultant loadings on 
the PCs and the scores to calculate new TPC parameters and pro-
duce TPCs reflecting variation along the first two PC axes (Knies 
et al., 2009).

2.2  |  Performance detriment estimation

For taxa with location data, we analysed thermal risk metrics 
using hourly temperature data from the ERA5 reanalysis via the 
Copernicus Climate Change Service (https://clima te.coper nicus.eu/
clima te- reana lysis). ERA5 data are generated across a 0.25° latitude 
× 0.25° longitude global grid by assimilating observational weather 
data into a forecast model. We estimated the thermal stress met-
rics over the year and then averaged across years (2015– 2019). Our 
analyses used ERA5 earth skin surface temperatures (estimated 
surface temperatures at radiative equilibrium) rather than operative 
temperatures, and consequently they underestimate thermal stress 
for ectotherms in open habitats (see Sunday et al., 2014).

We employed several standard TPC shapes, enabling us to de-
termine whether results are robust to selected curve shape. We 
plotted TPCs using a Gaussian rise in performance, P(T), up to the 
optimal temperature, Topt, and a quadratic decline to zero perfor-
mance at CTmax.

https://www.antwiki.org
https://climate.copernicus.eu/climate-reanalysis
https://climate.copernicus.eu/climate-reanalysis
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where T is hourly temperature and 1/σp represents the exponential 
increase in performance at lower temperatures [σp = (Topt − CTmin)/4] 
(Deutsch et al., 2008). We examined sensitivity to TPC shape by assum-
ing this quadratic decline and well as linear [1 − (T − Topt)/(CTmax − Topt)] 
and Gaussian [as above except σp = (Topt − CTmin)/3] declines from Topt 
to CTmax.

To explore TPC- based thermal risk metrics, we defined per-
formance detriment as PD = 1 − P(T) for hours when T > Topt (thus 
PD = 0 when T = Topt, and PD = 1 when T = CTmax). We quantified 
the cumulative performance detriment (CPD) as the annual sum of 
PD divided by the annual number of time periods (Figure 1). We 
assumed zero performance for T above CTmax and omitted per-
formance detriment corresponding to temperatures below Topt, as 
our focus here is on high temperature that can result in physiolog-
ical stress or damage (Somero, 2010). High CPD scores indicate 
reduced performance.

Next, we evaluated how well TSMs [computed as CTmax –  annual 
maximum of mean daily temperature] correspond to CPD. We used 
hourly data for CPD estimation but average daily temperatures for 
TSM, which represents an intermediate time- scale used in previ-
ous TSM analyses. Comparisons were similar when we estimated 
TSM daily and examined quantiles (e.g., the 25th percentile of daily 
TSM), so we used the single warmest day for comparability with 
previous implementations of TSM.

We then isolated the two contrasting effects that TPC asymme-
try has on performance detriments (see Figure 1a). TPCs that are 
more asymmetric have both (a) higher Topts (relative to CTmax) and 
(b) steeper performance declines above Topt. We examined the in-
fluence of each by creating artificial TPCs that omit each effect by 
shifting Topt and/or CTmax: (a) we assumed the Topt of a completely 
symmetric TPC [where Topt = CTmin + (CTmax − CTmin)/2] but shifted 
CTmax to retain the steep warm side slope; (b) we retained the higher 
Topt but shifted CTmax to correspond to the warm side slope of a 
symmetric TPC. Additionally, we constructed artificial TPCs using 
taxon- specific regression relationships between asymmetry and 
Topt to estimate Topt, given observed CTmin and CTmax. This allowed 
us to assess the viability of assessing thermal stress using TPCs 

(1)P(T) =

⎧
⎪⎪⎨⎪⎪⎩

exp

�
−

�
T−Topt

2σp

�2
�

for T≤Topt

1−

�
T−Topt

Topt−CTmax

�2

for T>Topt

F I G U R E  2  (a, b) Thermal performance curve (TPC) asymmetry (0: symmetric, 1: left- skewed right triangle) increases with higher thermal 
optima, Topt, for most taxonomic groups. (c) As Topts increase, critical thermal maxima (CTmax; red) increase and critical thermal minima 
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when only CTmin and CTmax –  but not Topt –  had been measured for 
a particular species.

We used linear mixed effect models from the R package nlme 
(Pinheiro et al., 2013) to assess how well the thermal risk metrics corre-
spond to CPD. Because changing TPC shape altered CPD qualitatively 
similarly across taxa (Figure 4b), we combined taxa in a single model 
for each response variable. We used the dataset name as a random ef-
fect to account for taxon and for level of biological organization differ-
ences. We used a second degree polynomial of CPD to regress against 
TSM to account for the observed shape of the relationship (Figure 4a).

2.3  |  Implications of asymmetry for thermal risk

What are the implications of changes in TPC asymmetry for thermal 
risk? We contrast a scenario of a full TPC shifting (change in position, 
not shape) versus only TPC asymmetry changing (only Topt shifts, not 
endpoints, Figure 1a). Both scenarios of TPC change are captured by 
CPD, whereas TSM does not capture the scenarios of altered thermal 
asymmetry because it only considers the position of CTmax (Figure 1b).

The predicted decline in performance detriment from Topt to 
CTmax depends on whether the relationship is Gaussian, linear or 
quadratic, respectively (Figure 1b). We chose the intermediate sce-
nario of linear decline for further analysis. We assessed the effect of 
temporal aggregation by examining time- scales ranging from hourly 
to annual averages along with the monthly average of daily maxi-
mum temperature (used by Sunday et al., 2014 to estimate TSM). 
CPD declines when temporal aggregation causes average tempera-
tures to decline below Topt (Figure 1c, i.e., a single hot hour is diluted 
when averaged over a day; Denny, 2017). Similarly, TSMs increase 
as temporal averaging reduces maximum temperatures (Figure 1c). 
The TSM corresponding to the monthly average of daily maximum 
temperature is similar to that with hourly temperatures. We selected 
a daily aggregation for TSM estimation because this intermediate 
time- scale is relevant to organismal thermal stress.

2.4  |  Uncertainty in thermal risk metrics

Many published estimates of thermal limits and optima do not report 
errors, but we can gauge uncertainty using fish data. Nonlinear re-
gressions of aerobic metabolic scope yielded roughly similar stand-
ard errors for TPC parameters across 10 populations (mean = 1.19 
and 1.29 °C; medians = 1.08 and 0.74 °C, respectively, for Topt and 
CTmax; Payne et al., 2016). CTmax estimates from acute assays for 
nine sockeye salmon populations, including some of the same popu-
lations from the TPC data, had lower standard errors (means = 0.05 
and 0.13 °C; medians = 0.05 and 0.14 °C for two different rearing 
temperatures; Chen et al., 2013). Rearing temperatures and stand-
ardization for development time or mass produced more variability 
in CTmax than between- individual variation or measurement issues 
(Chen et al., 2013).

Assuming a standard error of 1 °C (corresponding to the fish TPC 
parameters) and a sample size of 20, we explored how the resulting 
standard deviation (SD) of 4.5 °C for Topt and CTmax influences TSM 
and CPD estimates. We generated 1000 parameter estimates using 
means of 25 and 40 °C for Topt and CTmax, respectively, and a SD of 
4.5 °C assuming a normal distribution (R function rnorm). We esti-
mated errors using the environmental data in Figure 1. TSM errors 
were equivalent to CTmax errors (SD = 4.5 °C), so the proportional 
magnitude of the error depends on TSM values. CPD errors were 
SD = 0.02 and SD = 0.04 or 24 and 51% of CPD estimates when we 
varied only CTmax or Topt plus CTmax, respectively.

3  |  RESULTS

3.1  |  TPC shape and asymmetry

Most species and taxa –  except plankton –  have left- skewed TPCs 
and thus positive asymmetry scores (Figure 2a,b). Asymmetry values 
increase with Topt for most taxa (Table 1). In other words, Topt generally 

TA B L E  1  Linear regression (top) and phylogenetic generalized least squares (bottom) results examining the slopes of the relationships of  
thermal traits with thermal optima (Topt) in Figure 1

Asymmetry CTmin CTmax Tolerance range (CTmax –  CTmin) Warm range (CTmax –  Topt)

Slope SE t value p Slope SE t value p Slope SE t value p Slope SE t value P Slope SE t value p

Ant performance 0.034 0.0033 10 2.10 × 10−9 0.16 0.1 1.6 .13 0.38 0.1 3.8 .0011 0.22 0.15 1.4 .18 −0.62 0.1 −6.2 4.90 × 10−6

Lizard performance 0.041 0.0041 9.9 2.90 × 10−15 −0.28 0.12 −2.4 .019 0.62 0.077 8 1.30 × 10−11 0.89 0.14 6.5 9.70 × 10−9 −0.38 0.077 −5 3.80 × 10−6

Fish growth 0.054 0.017 3.2 .0062 0.38 0.22 1.7 .1 0.66 0.14 4.7 .00023 0.28 0.17 1.6 .13 −0.34 0.14 −2.5 .025

Insect fitness −0.00092 0.0048 −0.19 .85 1.1 0.14 7.9 4.40 × 10−11 0.99 0.054 18 1.50 × 10−27 −0.11 0.16 −0.67 .5 −0.0059 0.054 −0.11 .91

Plankton fitness 0.015 0.0023 6.5 4.90 × 10−10 0.74 0.047 16 1.40 × 10−36 0.86 0.039 22 9.90 × 10−56 0.12 0.066 1.9 .062 −0.14 0.039 −3.5 .00053

Phylogenetic

Ant performance 0.032 0.0032 10 1.50 × 10−8 0.12 0.11 1.2 .25 0.42 0.11 3.8 .0015 0.28 0.16 1.7 .11 −0.58 0.11 −5.3 5.80 × 10−5

Lizard performance 0.032 0.0042 7.6 1.50 × 10−9 0.36 0.14 2.5 .014 0.71 0.073 9.6 2.10 × 10−12 0.19 0.21 0.94 .35 −0.29 0.073 −4 .00023

Insect fitness 0.01 0.0086 1.2 .24 0.7 0.23 3 .0044 0.94 0.081 12 3.20 × 10−14 0.11 0.26 0.42 .68 −0.062 0.081 −0.77 .45

Plankton fitness 0.02 0.0031 6.4 7.60 × 10−9 0.56 0.064 8.7 1.00 × 10−13 0.91 0.054 17 2.60 × 10−30 0.36 0.086 4.2 6.30 × 10−5 −0.085 0.054 −1.6 .12

Abbreviations: CTmax, critical temperature maximum; CTmin, critical temperature minimum.
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increases more across species than either CTmin or CTmax (i.e., the slopes 
of CTmin or CTmax against Topt are less than 1). Although CTmax increases 
with Topt across taxa (Table 1), CTmin can either increase (most taxa), 
decrease (lizards), or be unrelated (ants) to increasing Topt (Figure 2c). 
Consequently, the tolerance range (i.e., CTmax − CTmin) is unrelated to 
Topt for most taxa but does increase with Topt for lizards (Figure 2d, 
Table 1). The range of the warm side of the TPC (CTmax − Topt) gener-
ally decreases with increasing Topt (except insects, Figure 2d, Table 1), 
indicating an increase in asymmetry. These relationships among TPC 
parameters largely hold when we control for phylogeny (Table 1).

Topt increases more than CTmax for TPCs positioned at warmer 
temperatures, such that performance starts to decline at relatively 
high Tb within the tolerance range. However, the higher Topt and as-
sociated higher TPC asymmetry result in relatively rapid declines in 
performance when Topt is exceeded. Steep declines in performance 
above Topt are expected by thermodynamics (Payne & Smith, 2017) 
but the shifts in asymmetry persist even on a thermodynamic scale 
(Supporting Information Figure S1).

We used a PC analysis to characterize the primary axes of TPC 
changes with increasing Topt (Figure 3). The first PC (accounting for 
55– 80% of shape variation) reflects increasing asymmetry for TPCs 
centred at warmer temperatures (Figure 3a). Increased Topt is tightly 
correlated with increased asymmetry (but note the inverse relation-
ship for lizards, Figure 3a). In the first PC, all three TPC parameters 
(Topt, CTmax, and tolerance range) increase, but the increase in tol-
erance range is of lesser magnitude for some taxa than for others 
(Supporting Information Figure S2). The second PC accounts for 
14– 43% of TPC variation and is dominated by decreasing tolerance 
range as Topt increases.

3.2  |  Estimates of thermal risk

How does TPC asymmetry alter estimates of thermal risk? Not sur-
prisingly, TSMs are inversely related to CPD, but the relationship 

between the metrics depends on TPC asymmetry (Figure 4a, see 
Supporting Information Figure S3 for relationship for Gaussian and 
quadratic performance declines). At a given TSM, more symmetric 
curves (blue points in Figure 4a) correspond to greater CPD, because 
Topt is exceeded more frequently (ANOVA CPD: F2,295 = 192.4, 
p < .0001; asymmetry: F1,295 = 22.9, p < .0001; CPD × asymmetry: 
F1,295 = 0.9, p = .4). Some high TSMs correspond to zero CPD in 
current environments, but others correspond to substantial perfor-
mance detriment.

Next, we isolated the thermal risk implications of the two 
changes involved in increasing TPC asymmetry (i.e., increases in Topt 
and a steeper slope of performance decline above Topt, Figure 4b). 
If shifts in Topt occur without shifts in TPC asymmetry (blue points 
in Figure 4b), CPD tends to be overestimated (slope + 95% confi-
dence interval = 1.23 + 0.33) because more temperatures exceed 
the optimum and performance declines initiate earlier. Omitting 
the steepening of the slope of performance decline (purple points) 
leads to modest but statistically significant underestimates of CPD 
(slope + 95% confidence interval = 0.73 ± 0.038). TPCs constructed 
with estimated Topts (yellow points) reasonably approximate CPD 
(slope ± 95% confidence interval = 1.004 ± 0.044).

Increased TPC asymmetry with increased Topt leads to different 
latitudinal patterns of thermal risk as indexed by TSM or CPD. We fo-
cused on latitudinal patterns of thermal risk for plankton, as this large 
dataset has location information (Figure 5). As in previous TSM analy-
ses (Kingsolver et al., 2013; Pinsky et al., 2019), the lowest TSMs occur 
at mid- temperate latitudes (Figure 5a). This result differs somewhat 
from analyses based on temporally coarser and more aggregated en-
vironmental data (Deutsch et al., 2008) because daily data capture the 
greater short- term variability found at temperate latitudes. CPD peaks 
at a more tropical latitude than the latitude minimizing TSM, consis-
tent with CPD but not TSM capturing how frequently temperatures 
exceed Topt. Latitudinal patterns are similar whether or not asymmetry 
is accounted for in the estimate of CPDs (Figure 5b), but CPD diver-
gences due to asymmetry are most pronounced at low latitudes.

TA B L E  1  Linear regression (top) and phylogenetic generalized least squares (bottom) results examining the slopes of the relationships of  
thermal traits with thermal optima (Topt) in Figure 1

Asymmetry CTmin CTmax Tolerance range (CTmax –  CTmin) Warm range (CTmax –  Topt)

Slope SE t value p Slope SE t value p Slope SE t value p Slope SE t value P Slope SE t value p

Ant performance 0.034 0.0033 10 2.10 × 10−9 0.16 0.1 1.6 .13 0.38 0.1 3.8 .0011 0.22 0.15 1.4 .18 −0.62 0.1 −6.2 4.90 × 10−6

Lizard performance 0.041 0.0041 9.9 2.90 × 10−15 −0.28 0.12 −2.4 .019 0.62 0.077 8 1.30 × 10−11 0.89 0.14 6.5 9.70 × 10−9 −0.38 0.077 −5 3.80 × 10−6

Fish growth 0.054 0.017 3.2 .0062 0.38 0.22 1.7 .1 0.66 0.14 4.7 .00023 0.28 0.17 1.6 .13 −0.34 0.14 −2.5 .025

Insect fitness −0.00092 0.0048 −0.19 .85 1.1 0.14 7.9 4.40 × 10−11 0.99 0.054 18 1.50 × 10−27 −0.11 0.16 −0.67 .5 −0.0059 0.054 −0.11 .91

Plankton fitness 0.015 0.0023 6.5 4.90 × 10−10 0.74 0.047 16 1.40 × 10−36 0.86 0.039 22 9.90 × 10−56 0.12 0.066 1.9 .062 −0.14 0.039 −3.5 .00053

Phylogenetic

Ant performance 0.032 0.0032 10 1.50 × 10−8 0.12 0.11 1.2 .25 0.42 0.11 3.8 .0015 0.28 0.16 1.7 .11 −0.58 0.11 −5.3 5.80 × 10−5

Lizard performance 0.032 0.0042 7.6 1.50 × 10−9 0.36 0.14 2.5 .014 0.71 0.073 9.6 2.10 × 10−12 0.19 0.21 0.94 .35 −0.29 0.073 −4 .00023

Insect fitness 0.01 0.0086 1.2 .24 0.7 0.23 3 .0044 0.94 0.081 12 3.20 × 10−14 0.11 0.26 0.42 .68 −0.062 0.081 −0.77 .45

Plankton fitness 0.02 0.0031 6.4 7.60 × 10−9 0.56 0.064 8.7 1.00 × 10−13 0.91 0.054 17 2.60 × 10−30 0.36 0.086 4.2 6.30 × 10−5 −0.085 0.054 −1.6 .12

Abbreviations: CTmax, critical temperature maximum; CTmin, critical temperature minimum.
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F I G U R E  3  We use principal component transformations of the thermal performance curves (TPCs) to assess the primary forms of 
TPC variation across taxa. The inset numbers indicate the proportion of variance accounted for by the first two principal components. 
Asymmetry (0: symmetric, 1: left- skewed right triangle) increases (but decreases for lizards) with the thermal optima, Topt, of the first 
principal component transformation (PC1, blue) but not the second (PC2, yellow). This indicates that asymmetry is the dominant variation 
(PC1) among TPCs differing in Topt. PC2 relates primarily to breadth (see also Supporting Information Figure S2).
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4  |  DISCUSSION

Both the temperature that maximizes performance (Topt) and the 
rate of performance decline at temperatures above Topt are impor-
tant considerations in understanding organismal responses to cli-
mate change and variability. A key pattern uncovered here is that 
taxa with relatively high Topt have relatively asymmetric TPCs. This 

suggests that adaptation to warmer environments can increase 
sensitivity to changes in body temperatures above Topt and thereby 
highlights limitations in thermal stress metrics based solely on CTmax. 
Specifically, a 3 °C TSM for a warm- adapted species (high Topt, steep 
drop at higher temperatures) indicates more thermal risk than a 3 °C 
TSM for a cold- adapted (low Topt) one. Steeper performance declines 
for organisms with higher Topts may augment climate change risks 

F I G U R E  4  (a) Thermal safety margins (TSMs) can differ strikingly from a more comprehensive estimate of thermal risk –  cumulative 
performance detriment (CPD). For a given level of performance detriment, more symmetric thermal performance curves (TPCs; 0: 
symmetric, 1: left- skewed right triangle) correspond to higher TSMs because the lower thermal optima, Topts, increase the incidence 
of thermally stressful temperatures. (b) The Topt and slope shifts associated with asymmetric TPCs differentially impact thermal stress 
estimates (black line = 1:1). Estimating CPD while omitting the Topt shift (blue points) leads to an overestimate whereas estimating CPD while 
omitting the steeper slope (purple points) leads to an underestimate. Estimating CPD using an estimate of Topt (yellow points) based on mean 
asymmetry for the taxon reasonably approximates CPD.
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for species in warm environments, despite their high Topts (Huey 
et al., 2009). Also, TSM estimates differ substantially when tempera-
ture data are aggregated over time (Figure 1c) but the time- scale 
that best describes thermal exposure and sensitivity is rarely clear 
(Clusella- Trullas et al., 2021; Denny, 2017).

We quantified issues with TSMs and analysed an exemplar ther-
mal risk metric that incorporates both the onset and the rapidity of 
performance declines at high temperature. A more comprehensive 

metric would additionally account for thresholds and responses to 
thermal history (Marshall & Sinclair, 2015), including the duration of 
exposure (Jørgensen et al., 2019; Kingsolver & Woods, 2016; Rezende 
et al., 2014). Moreover, our analysis assumes TPCs are temporally in-
variant (thus, no acclimation or evolution –  although both could be 
accommodated). Experiments quantifying integrated responses to 
realistic environmental variability and investigating thresholds will 
be crucial to refining thermal stress metrics that account for shifting 

F I G U R E  5  Metrics based on performance suggest divergent latitudinal gradients in plankton thermal stress from that for thermal safety 
margin (TSM), which we define as CTmax − Tmax, where CTmax is the critical thermal maximum and Tmax is the annual maximum of daily air 
temperature. (a) TSM declines at mid- temperate latitudes. Asymmetry (0: symmetric, 1: left- skewed right triangle) influences the latitudinal 
patterns of thermal stress. (b) Cumulative performance detriment (CPD) peaks at lower latitude than corresponds to the minimum TSM. We 
depict patterns for both the observed TPC and symmetric TPCs assuming Topt = CTmin + (CTmax − CTmin)/2 (omitting both the shift in Topt and 
slope), where Topt is the thermal optimum. The vertical lines delineate the tropical and temperate zones.
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TPC shape as environments warm (Khelifa et al., 2019; Vázquez 
et al., 2017).

TPCs can differ substantially across performance traits and lev-
els of organization (Huey, 1982; Kellermann et al., 2019; Rezende 
& Bozinovic, 2019). Care must be thus taken in choosing ap-
propriate performance metrics, but our analysis suggests that 
shifts in TPC shape, and thus thermal risk, are rather consistent 
across performance metrics and taxa. CTmax measurement issues 
(Chown et al., 2009; Kingsolver & Umbanhowar, 2018; Terblanche 
et al., 2007) may account for some differences in patterns of TPC 
variation between our analyses and those from prior compilations. 
Many of the critical thermal limits in our compilation are measured 
as performance limits in constant conditions (excepting ants and 
lizards, see Methods) rather than via thermal ramping. Broad inter-
specific compilations for terrestrial species generally find that CTmax 
is rather independent of latitude, whereas CTmin decreases with an 
increase in latitude (Huey et al., 2009; Sunday et al., 2019). Within 
taxonomic groups we find that CTmax increases with Topt but that the 
relationship with CTmin is variable.

Our compilation additionally detects that tolerance range (CTmax −  
CTmin) can remain constant or can increase with increasing Topt 
(Figure 2d). Tolerance range tends to increase with latitude (Sunday 
et al., 2019), but tolerance range can have limited biological signifi-
cance to warming scenarios if TPCs have long left tails. Tolerance 
range can also depend on habitat choice, as is the case for lizards, 
which have greater thermal tolerance ranges in more temperate areas 
that have cooler air temperatures but greater exposure to solar radia-
tion in more open habitats (Huey et al., 2009). The observed shifts in 
thermal sensitivity are consistent with ‘hotter is broader’ observations 
for bacteriophages (Knies et al., 2009; see also related ‘hotter is bet-
ter’, e.g., Angilletta et al., 2010). TPCs tend to narrow at higher levels of 
biological organization (e.g., photosynthesis to performance to fitness; 
Bozinovic et al., 2020; Rezende & Bozinovic, 2019).

Why do species and populations with higher Topts tend to 
have greater TPC asymmetry? Three factors are likely involved. 
First, in many taxa, lower limits vary more than do upper thermal 
limits (Sunday et al., 2010, 2019). For example, in most ectother-
mic Metazoa and plants, CTmin decreases with increasing latitude, 
whereas CTmax does not (Sunday et al., 2019). These shifts can lead 
to greater asymmetry and steeper performance declines above Topt 
with latitude. Similar patterns are seen along latitudinal clines among 
populations within insect species (Chown et al., 2002). This can re-
sult from rare, hot extremes selecting for increased CTmax even in 
cool locations. Also, many organisms use behavioural thermoregu-
lation to buffer hot temperatures (Kearney et al., 2009) more effec-
tively than cold temperatures (Munoz et al., 2014). In contrast, the 
coldest temperatures tend to exhibit stronger latitudinal patterns 
(Sunday et al., 2019). Additionally, different physiological mecha-
nisms underlie cold and warm stress (Angilletta, 2009), which likely 
contributes to CTmin and CTmax differentially shifting with Topt.

Second, species with higher optimal temperatures can have higher 
maximal performances [the ‘hotter is better’ hypothesis (Frazier 
et al., 2006)]. This pattern has been reported in a number of studies 

(Angilletta et al., 2010; Huey & Kingsolver, 1989; Kingsolver, 2009). 
Warmer environments, in which the frequency of high temperatures 
is elevated, will select for evolutionary increases in Topt. But if CTmax 
is relatively evolutionarily constrained (Hoffmann et al., 2013), this 
will yield a positive association between Topt and asymmetry. Third, 
asymmetry may also result from thermodynamics because physiolog-
ical rates shift more rapidly at high temperatures, which can reduce 
the temperature range between Topt and CTmax (Payne & Smith, 2017).

In conclusion, we appreciate that TSMs have proven useful to 
analyses of thermal risk. However, such CTmax- based analyses miss 
key components of thermal risk, and we argue that these can be bet-
ter assessed using TPCs. Knowing that performance drops by 10% 
is more ecologically relevant than saying that TSM is only 4 °C, es-
pecially given that the rate of performance decline is not a constant 
but is steeper for populations with higher Topt. Many populations 
are already experiencing performance declines associated with tem-
peratures above Topt. We argue that estimating ongoing or projected 
performance loss is more relevant to anticipating the thermal risk of 
climate change than is the coarse proxy of how close populations are 
to experiencing a single thermal extreme that exceeds CTmax (see 
also Parratt et al., 2021). The reliance of TSM on a single thermal 
extreme may overemphasize thermal risk at temperate latitudes, 
where temperature variability may result in pronounced extremes, 
relative to organisms more frequently experiencing performance 
loss at lower latitudes.

Unfortunately, TPCs or Topt have been estimated much less often 
than has CTmax, potentially limiting the global feasibility of TPC ther-
mal risk metrics. Our analysis suggests the importance of collecting 
additional Topt data but also demonstrates that Topt can be reason-
ably approximated using taxon- specific relationships between Topt 
and asymmetry. We conclude that TPC asymmetry should be ac-
counted for in assessing the onset and severity of thermal risk.
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